三角函数诱导公式大全,三角函数的诱导公式
来源:互联网
时间:2024-11-24 03:18:57
浏览量:
1,三角函数的诱导公式
sin(a-π/4)=sin(a-π/2+π/4)=-sin[π/2-(a+π/4)]=-cos(a+π/4)因此cos(a+π/4)=-1/3 sin(A-π/2)=-cosAcos(π/4+a)=-sin[(π/4+a)-π/2] =-sin(a-π/4) =-1/32,三角函数诱导公式
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α3,关于三角函数诱导公式
诱导公式书上都有的,自己去看看…就感觉你后面问的还有点水准…其实学数学最简单,就是公式的灵活运用…你连公式都不记得就更不用说学好数学了…所以靠前步就是记熟公式,最好知道公式的由来,这样就不容易忘…第二步做每个公式那章的习题加深印象和掌握用法…第三步做综合点的题目学会不同章节的综合知识求解,公式的联合使用…当你看得题目就能大致猜到它要用什么方面的公式的时候你的数学就ok 了…诱导公式的口诀是:奇变偶不变,符号看象限注意到是平方,所以符号不考虑都行证明:因为[sin(90±a)]^2=[cosa]^2,[cos(90±a)]^2=[sina]^2所以[sina]^2+[sin(90±a)]^2=[sina]^2+[cosa]^2=1[cosa]^2+[cos(90±a)]^2=[cosa]^2+[sina]^2=你不要被骗了,那个说她有五六十分的;其实她常交白卷拿到0分!对不起,帮不了。打酱油路过的………上了高中我数学一直徘徊在五六十分左右4,三角函数的诱导公式有哪些
三角函数的诱导公式:公式—∶终边相同的角的同—三角函数的值相等、公式二∶T÷α的三角函数值与α的三角函数值之间的关系、公式三:任意角α与-α的三角函数值之间的关系、公式四:利用公式二和公式三可以得到r-α与α的三角函数值之间的关系、公式五:利用公式—和公式三可以得到2T-α与α的三角函数值之间的关系、公式六:T/2±α与α的三角函数值之间的关系。三角函数的诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。诱导公式有六组,共54个。三角函数诱导公式(Induction formula)是一种数学公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。包括一些常用的公式和和差化积公式。公式—∶终边相同的角的同—三角函数的值相等、公式二∶T÷α的三角函数值与α的三角函数值之间的关系、公式三:任意角α与-α的三角函数值之间的关系、公式四:利用公式二和公式三可以得到r-α与α的三角函数值之间的关系、公式五:利用公式—和公式三可以得到2T-α与α的三角函数值之间的关系、公式六:T/2±α与α的三角函数值之间的关系。诱导公式记忆口诀:“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间上小于零,所以右边符号为负,所以右边为-sinα。符号判断口诀:全,S,T,C,正。这五个字口诀的意思就是说:靠前象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正。5,三角函数所有诱导公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/(1-tan^2(α))tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α半角的正弦、余弦和正切公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=(1—cosα)/sinα=sinα/1+cosα多功能公式sinα=2tan(α/2)/(1+tan^2(α/2))cosα=(1-tan^2(α/2))/(1+tan^2(α/2))tanα=(2tan(α/2))/(1-tan^2(α/2))三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))/(1-3tan^2(α))三角函数的和差化积公式sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]6,三角函数诱导公式要全部帮帮忙
1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)] cos(a)cos(b)=12?[cos(a+b)+cos(a-b)] sin(a)cos(b)=12?[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.多功能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的 ) a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))27,三角函数的诱导公式全部
常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 靠前象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα ·tanβ tanα-tanβtan(α-β)=—————— 1+tanα ·tanβ 倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanαtan2α=————— 1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式) 1-cosαsin^2(α/2)=————— 2 1+cosαcos^2(α/2)=————— 2 1-cosαtan^2(α/2)=————— 1+cosα多功能公式⒌多功能公式 2tan(α/2)sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2)cosα=—————— 1+tan^2(α/2) 2tan(α/2)tanα=—————— 1-tan^2(α/2)多功能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))然后用α/2代替α即可。同理可推导余弦的多功能公式。正切的多功能公式可通过正弦比余弦得到。三倍角公式⒍三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α)tan3α=—————— 1-3tan^2(α)三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^2(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角 减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。和差化积公式⒎三角函数的和差化积公式 α+β α-βsinα+sinβ=2sin—----·cos—--- 2 2 α+β α-βsinα-sinβ=2cos—----·sin—---- 2 2 α+β α-βcosα+cosβ=2cos—-----·cos—----- 2 2 α+β α-βcosα-cosβ=-2sin—-----·sin—----- 2 2积化和差公式⒏三角函数的积化和差公式sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*co***+cosa*sinb,sin(a-b)=sina*co***-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*co***所以,sina*co***=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*co***-sina*sinb,cos(a-b)=cosa*co***+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*co***所以我们就得到,cosa*co***=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*co***=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*co***=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)